10.8 Equations of Circles Guided Notes

Objective: To be able to write the equation circles and graph circles.

Standard Equation of a Circle: $\quad(x-h)^{2}+(y-k)^{2}=r^{2}$

Things to Notice

1. Center at point (h, k)
2. Radius r
3. The terms being squared are not expanded.
4. The Signs!!!

Write the equation for each circle.

1) Center at $(-2,3), r=5$
2) Center at $(-2,-6), d=8$

$$
\begin{aligned}
& (x-h)^{2}+(y-k)^{2}=r^{2} \\
& (x+2)^{2}+(y-3)^{2}=5^{2} \\
& (x+2)^{2}+(y-3)^{2}=25
\end{aligned}
$$

$$
\begin{aligned}
& r=4 \\
& (x-h)^{2}+(y-k)^{2}=r^{2} \\
& (x+2)^{2}+(y+6)^{2}=4^{2} \\
& (x+2)^{2}+(y+6)^{2}=16
\end{aligned}
$$

3) Center at $\left(-\frac{1}{2}, \frac{1}{4}\right), r=\sqrt{3}$

$$
\begin{aligned}
& (x-h)^{2}+(y-k)^{2}=r^{2} \\
& \left(x+\frac{1}{2}\right)^{2}+\left(y-\frac{1}{4}\right)^{2}=(\sqrt{3})^{2} \\
& \left(x+\frac{1}{2}\right)^{2}+\left(y-\frac{1}{4}\right)^{2}=3
\end{aligned}
$$

4) A diameter has endpoint at $(-7,-2)$ and $(-15,6)$ *Find Midpoint, then find distance from One of the endpoints to the center.

$$
\begin{array}{rlr}
\text { midpoint } & =\left(\frac{(-7 \pm 15)}{2}, \frac{(-2+6)}{2}\right) \\
& =\left(\frac{-22}{2}, \frac{4}{2}\right) \\
& =(-11,2) & \\
\text { Distance } & =\sqrt{(-11+7)^{2}+(2+2)^{2}} \\
& =\sqrt{(-4)^{2}+(4)^{2}} & (x-h)^{2}+(y-k)^{2}=r^{2} \\
& =\sqrt{16+16} & (x+11)^{2}+(y-2)^{2}=(\sqrt{32})^{2} \\
& =\sqrt{32} & (x+11)^{2}+(y-2)^{2}=32
\end{array}
$$

5) Center is in the third quadrant, $d=14$, and has tangent lines $x=4, y=-1$.

*Draw tangent lines, count left 7, down 7 so it's in the $3^{\text {rd }}$ quadrant
6) $x^{2}+y^{2}=25$
7) $(x+4)^{2}+(y+3)^{2}=16$

$r=5,(0,0)$

8) $(x-2)^{2}+(y-2)^{2}=r^{2}$ and contains $(2,5)$.
$(2,2)$

$$
\begin{aligned}
r & =\sqrt{(2-2)^{2}+(2-5)^{2}} \\
& =\sqrt{(0)^{2}+(-3)^{2}} \\
& =\sqrt{0+9} \\
& =\sqrt{9} \\
& =3
\end{aligned}
$$

